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As a result of the cubic symmetry operations there are up to 1152 rotations describing the same rela- 
tive orientation of two cubic lattices. The relation between these equivalent rotations is made trans- 
parent and it is shown how the usual definition of the disorientation has to be modified so that, in 
each case, the definition picks out a unique rotation among all the equivalent ones. A convenient 
method is described for determining all the classes of rotation that lead to coincidence-site lattices of 
a given density and for finding the number of rotations in each class. 

Introduction 

This paper considers questions that arise in studying 
the statistical distribution of the relative orientation 
of neighbouring crystals. In particular, it deals with the 
description of the relative orientation of two cubic 
lattices, 1 and 2. The paper consists of two parts. In 
the first part, the two lattices may have different 
lattice constants and may belong to different cubic 
Bravais classes. We describe the various rotations by 
which lattice 2 may have reached the position under 
consideration starting from a position where its four- 
fold axes were parallel to those of lattice 1. Our descrip- 
tion gives a transparent view of all the rotations with 
this property. We show that the disorientation, as 
usually defined, is not always determined uniquely by 
the relative orientation; a minor change in the defini- 
tion makes the disorientation unique. 

In the second part, we specialize to two equal lattices 
related by a coincidence rotation, i.e. a rotation giving 
rise to a three-dimensional pattern of coincidence sites. 
These sites form the coincidence-site lattice or CSL. 
[For a discussion of the importance of the CSL to 
interpret experimental results, we refer the reader to 
Grimmer, Bollmann & Warrington (1974) and refer- 
ences quoted therein.] We give a convenient method for 
determining all the relative orientations and, hence, 
all the disorientations that give rise to a large density 
of coincidence sites. For each disorientation we obtain 
the number of rotations that give rise to the same rela- 
tive orientation of two lattices. 

The reader should not be discouraged by the fact 
that we state some of our results as theorems and 
lemmas. These terms do not mean that we shall use 
highbrow mathematics; they are introduced only to 
emphasize the results that become important further 
o n .  

* Present address: Gabelrfitteweg 71, 3323 B/iriswil, Swit- 
zerland. 

1. Two cubic lattices with arbitrary relative orientation 

1.1 The description of  the relative orientation of  two 
cubic lattices 
A right-handed orthogonal coordinate system with 

axes in (100) type directions of a cubic lattice can be 
chosen in 24 different ways. Consider two cubic 
lattices. Their relative orientation can be described by 
any of the rotations that map a coordinate system (71 
of one of the lattices onto a coordinate system Ca of the 
other. In this way, we obtain up to 24.24.2= 1152 
different descriptions of the same relative orientation 
of two cubic lattices. Rotations describing the same 
relative orientation of two cubic lattices will be called 
(cubically) equivalent. 

The lattice connected with Ca will be called lattice 1, 
the other lattice 2. The rotation that maps Ca onto C2 
is described by a matrix R in the coordinate system (71. 
Consider new coordinate systems C~ and C2. Expressed 
in C1, the mapping C~-+ C~ has the form S and the 
mapping C2 -+ C2 the form RTR -1, where S and T are 
symmetry rotations of lattice 1. The mapping C~ -+ C2 
becomes then RTR -1. R .  S = R T S  in system (71 and 
S .  RTS.  S - 1 =  SRT in system C~. Taking into account 
that either of the two lattices may take over the role of 
lattice 1, we conclude that cubic equivalence can be 
defined as follows: 

Definition. Two rotation matrices R,R'  are called 
(cubically) equivalent if and only if 

R ' = S R T  or R ' = S R - 1 T ,  (1) 

where S and T describe cubic symmetry rotations. 

1.2 The homomorphism between unit quaternions and 
rotations 

In order to gain a synopsis of a class of cubically 
equivalent rotations, it is convenient to make use of the 
two-to-one homomorphism between the group Q of 
unit quaternions and the rotation group SO(3) (see, 

A C 3 0 A  - 1 
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e.g., Du Val, 1964). A unit quaternion a is an ordered 
set of four real numbers,  

satisfying 
a:={ao, a ,az, 

aoZ+ 2 2 + a 2 =  1 al + a2 (2) 

The unit quaternions form a group Q with respect to 
the multiplication law 

a .  a ' =  {aoao-ala~-a2a2-aaa~, 
aoa'l + aiao + a2a~-aaa'2, 
aoaz-ala3 + a2ao + a3a~, 
aoa~ +aiaz-a2a~ + a3ao} • (3) 

The homomorph i sm associates with + a the rotation 

( aZ + a~-a2z-a] 2(ala2-aoa3) 2(ala3 + aoa2) 

2(alaz+aoa3) a2o-a~+a22-a~ 2(a2aa-aoal) l "  (4) 

2(ala3-aoa2) 2(a2a3 + a0ai) a~-a2-a~ + a] ] 

The quaternions associated with a r ight-handed rota- 
tion by an angle 0, 0 < 0 < re, about  an axis with direc- 
tion cosines n~, n2, na can be found from (4) if we recall 
the matrix describing this rotat ion:  

( 1 - c o s  0)n2 +cos  0 (1 - c o s  O)nin2-n3 sin 0 

( 1 - c o s  O)nin2+n 3 sin 0 (1 - c o s  0)n~+cos  0 

( 1 -  cos O)n~na-n2 sin 0 (1 - c o s  O)n2n3 + n~ sin 0 

( 1 - c o s  O)n~n3+n2 sin 0 \  

( 1 - c o s  O)n2na-ni sin 0 ) (5a) 

(1 - cos O)n 2 + cos 0 

-~ + {cos ½0, ni sin ½0, n2 sin ½0, n3 sin ½0 ).  (5b) 
(5b) shows that  + a determines a r ight-handed rotat ion 
by an angle 

0 =  2 arc cos [ao[, 0 < 0 < re, (6a) 

about  the axis 

[nl, nz, n3]=sign (ao) (1-a2)-l/2[al, a2,a3], (6b) 

where sign (ao) is + 1 for a0 > 0 and - 1 for a0 < 0. 
It is a straightforward if somewhat  tedious mat ter  to 

derive from (1) and (5b) the connexion between cubic- 
ally equivalent unit quaternions,  i.e. between the 
quaternions corresponding to cubically equivalent rota- 
tions. The result is: 

Theorem 1. The quaternions that  are cubically 
equivalent to _+ a are obtained by arbi trary permuta-  
tions and sign changes from one of the following six 
expressions 

{ao, al, a2,a3} ( = a )  (7a) 

2-1/2{ao+ax, ao-al ,  az+aa, az-a3 } (7b) 

2-  ~/2{a o + az, ao - a2, a~ + aa, al - a3} (7e) 

2- I/2{a o + a3, ao-  a3, al + a2, al - a2} (7d) 

½(ao q- ai + a2 + a3, ao + ai -- a2 -- a3, 

a o -- a 1 + a 2 -- a3, a 0 -- a 1 -- a 2 + a 3 } (7e) 

½{ao + ai + a2 -- a3, ao q- a I -- a 2 + a3, 

ao--ai +a2+aa, ao--ai--a2--a3}. (7f) 

Let us discuss this result. The rotat ion angles appearing 
in a cubic equivalence class are given by: 0 =  
2 cos -1 lbol, where bo is one of  the 24 numbers  that  
appear  in (7), i.e. a0, al, a2, a3, 2-1/2(a 0-1- a l ) ,  . . . .  Con- 
sider a fixed choice of  0" the remaining three numbers  
on the same line of (7) determine the possible rotat ion 
axes connected with 0. As an example, choose b0= 
2-1/2(ao-al). Each of the corresponding rotat ion axes 
is parallel to one of the directions obtained from 
[a0 + al, a2 -}- a3, a 2 -  a3] by arbi t rary permutat ions  and 
sign changes of the three components.  

1.3 Disorientations 
Since cubically equivalent rotations describe the 

same superposit ion of two cubic lattices, it will often 
be convenient to make a part icular  choice of the rota- 
tion describing the superposition. In the cubic equiv- 
alence class under consideration, we choose a rotat ion 
with the smallest rotat ion angle 0. Theorem 1 tells us 
that  there is always such a rotat ion with an axis 
[nl,nE, n3] in the s tandard stereographic triangle (SST), 
i.e. with nl >- n2-_ na >- 0. Rotat ions with the smallest 
angle and an axis in the SST are called disorientations 
(see, e.g. Handscomb,  1958). The axis of + a  with 
a0 > 0 lies in the SST if ax _ a2 ~ aa - 0. According to 
Theorem 1, the condition that  0 be smallest is 
ao >_ 2-1/2(a o q- a i )  and ao >_ ½(ao + al + a2 + a3).  

Definition. A rotat ion + a is called a disorientation if 

ai > a2 > a3 > 0, (8a) 

a~ < ( ¢ 2 - 1 ) a 0 ,  (8b) 

al + a2 + a3 < a0 • (8c) 

If  the equality sign does not hold in (8b, 8c), the dis- 
orientation is determined uniquely. If the equality sign 
holds in (8c) only, the expression (7e) will coincide with 
a and we still have a unique disorientation. However,  
if the equality sign holds in (8b), then (7b) will give 

{a0, a,, 2-1/2(a 2 + a3), 2-1/2(a 2 -- a3)}, 

which coincides with (7a) only if a3=(1/2 - 1)a2. We 
conclude: if a is a disorientation then it will be the 
unique disorientation in its class unless a~=( I /2 -1 )a0  
and a3 4:(1/2 - 1)a2. 

Consider for a moment  all rotations, not just  a cubic 
equivalence class. Equations (2) and a~=(1 /2-1)ao  
give for the maximal disorientation angle 0,,, about  the 
axis [lmn] in the SST" 

tg (½0m) = [ ( 3 -  21/2) (1 -+-m 2 q- n2)] 1/2, (9a) 

whereas equations (2) and al + a2 + a3 = a0 give 

tg(½0, , )=(l+m2+n2)l /2( l+m+n)-k  (9b) 
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These results are illustrated in Fig. 1.0~ is determined 
by (9a) below the dotted line and by (9b) above. The 
disorientation becomes unique if we require its axis not 
to lie below the dashed line if 0 = 0~. 

2. Two equal cubic lattices in coincidence orientation 

2.1 The cubic equivalence classes o f  coincidence rotations 
In the following, we shall consider the special case 

that  the unit quaternion has commensurable com- 
ponents, i.e. that all the components are integral 
multiples of one and the same number. Such a unit 
quaternion can be written in the form a =  c{A0, A~, A2, 
A3}, where the Ai are coprime integers (i.e. integers that 
have no common integral factor) and c is a constant 
multiplying each At. Since at least one of the numbers 
At is odd, A 2 + A 2 + A 2 + A  2 cannot be a multiple of 8. 
We conclude that a commensurable unit quaternion 
has the form 

a=(mo.)-x/2{Ao, Ax, A2,A3}, (10) 

where o. is odd, N =  1, 2, or 4, and the Al are coprime 
integers with A 2 + A 2 + A~ + A ] = No.. 

In this case, equation (4) gives a rotation matrix 
with rational matrix elements. The smallest common 
denominator (SCD) of the matrix elements is a factor 
of No- that we call o.'. Denote the elements of the rota- 
tion matrix by rtj then Q~j:= o.'. rtj is an integer. The 
equations 021 + 0~2 + 023 = o.,2 for i =  1,2, 3 show that o.' 
is odd. (If o.' was even, a '2 would be a multiple of 4, 
which is possible only if all the 0tj are even. But then 
o.' is not the SCD.) It follows from equations (3, 4) that 

4a02 = 1 + r~l + r22 + r33 
4a 2 = 1 + r ,  -- r22-- r33 

4a~ = 1 - rll + r22- r33 

4a 2 = 1 -- r l l--  r22 + r33. 

These equations tell us that No. is a factor of 4o.', 
whence o. '= o.. It is not difficult to show that the matrix 
(4) does not have rational matrix elements if the corre- 
sponding quaternion does not have commensurable 
components. We conclude: 

Lemma 1. Each rotation of which the matrix ele- 
ments have o. as SCD corresponds (one-to-one) to a 
pair of quaternions of the form 

+_ (NO.)-I/2{Ao, A1,A2,A3}, 

with N = I ,  2, or 4 and the coprime integers At 
satisfying 2 2 2 2 Ao + AI + A2 + Aa= NO.. 

A rotation with matrix elements having o. as SCD 
will be called a o. rotation. It has been shown by Grim- 
mer, Bollmann & Warrington (1974) that a o. rotation 
applied to a cubic lattice produces a coincidence-site 
lattice with primitive unit cell o. times larger in volume 
than the primitive unit cell of the original lattice. 
Therefore, o. rotations will also be called coincidence 
rotations. 

Lemma 2. To each o. rotation there is a cubically 
equivalent rotation given by _ a-1/2{B0,B~,92,Ba},  
where the Bt are coprime integers satisfying B0 >_ B1 _> 
B2_>B3>0. 

To prove this, let + a =  + (~ra)-l/2(Ao, A1,A2,Aa} be 
the quaternions of the a rotation under consideration. 
If  PT= 1, Lemma 2 follows immediately from Theorem 
1. If  N =  2, two of the At are odd and two even. One of 
the quaternions (7b-7d) has the form (10) with N =  1, 
the other two with N = 4 .  If_N= 4, all the Ai are odd and 
(7e) has the form (10) with N =  1. 

Take for (7a) one of the quaternions of Lemma 2. 
The expressions (7b-7d) then have the form (10) with 
N = 2  and (7e, 7f) the form (10) with N = 4 .  It follows 
that the Bt of Lemma 2 are determined uniquely and 
we have: 

Theorem 2. To find the cubic equivalence classes of 
o. rotations, we have to determine the different ways to 
express o. as 

O.=B~ + B2 + B2 + B 2, 

where the Bt are coprime integers satisfying 

Bo > B1 > B2 -> Ba > 0. 

We shall use the symbol [Bo, Bl, B2,//3] to denote a cubic 
equivalence class of coincidence rotations. 

Example: there are two classes of rotation with o.= 
21; they correspond to 21 = 4 2 + 2 2 +  12+02=32+22+ 
22 + 2 2. 

,~,,,,[1 1 1 ]  , , / \ 6 o .  
t12~ 2 q /  ....... \ 

62"8* 

== • 

[1 o o] [1 1 o] 
45 ° 60"6* 

Fig. 1. The maximum disorientation angles depending on the 
direction of the rotation axis within the standard stereo- 
graphic triangle. - . . . . .  a0 = (I/2 - 1) - Ial = at + a2 + a3 =~ a2 + 
aa = 1/2al. a3 = (1/2-- 1)a2. 

2.2 The number of  coincidence rotations 
To determine the total number of o. rotations, we 

make use of a number-theoretical result. Let S(o.) be 
the sum of the divisors of the odd number o., e.g. 
S(21) = 1 + 3 + 7 + 21 = 32. The number of different 
quadruples A={Ao,  A ,A2,Aa}  of (not necessarily 
coprime) integers satisfying A02 + A~ + A~ + A~ = 2"o. 
equals 8 S(o.)if  n = 0  and 24 S(o.) if n is a positive 
integer. This result is due to Jacobi (1828). If the dif- 
ferent factors that appear more than once in the 
decomposition of o. as a product of primes are 
Pl , . . . ,P , ,  we shall write o . = p ~ . . . p 2 ,  q. It follows 
from Jacobi's result that the number T(2"o.) of different 

A C 3 0 A  - I *  
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quadruples A of integers that are coprime and satisfy 
A02 + A~ + A~ + A32 = 2"a is given by 

T(a)=8W(a),  T(2a)=24W(a), T(4a)= 16W(a), 

T(2"a) = 0 if n > 2, 
where 

w(o)=s(o)- ~ S ( p r  2 . o ) + . . .  
l < i < r  

+ ( -  1)" ~ S(p?~2. . .p? ,Za)+. . .  
1<i1<  • • "<in<--r 

+ ( -  1)rS(q). 

Since each a rotation corresponds to a pair + A, the 
total number of a rotations is ½(8+24+ 16)W(a)= 
24W(o-). 

To determine the number of rotations in the cubic 
equivalence class [A,B,C,D], we first compute the 
number v of different quadruples obtained from 
{A,B,C,D} by permutations and sign changes. We 
write v=  8 W, call W the 'weight' of the class, and list 
W in Table 1. 

Table 1. The weight W 
of  the cubic equivalence class [A, B, C, D] 

No other cases than those listed are possible because either one 
or three of the numbers A,B,C,D are odd, the others even. 

[A,B,C,D] W 
A>B>C>D>O 48 (lla) 
D>0, two numbers equal 24 (llb) 
A> B> C>(D=O) 24 (llc) 
C>(D=O), two numbers equal 12 (11d) 
D > 0, three numbers equal 8 (11 e) 
A>B>(C=D=O) 6 ( l l f)  
(A=B=C)>(D=O) 4 (llg) 
A>(B=C=D=O) 1 (llh) 

It is easy to check whether we have found all classes 
of a rotations: their weights must add up to W(a). 
Example: W(21)= 32 whereas the two classes of rota- 
tion with a = 21 have weights 24 and 8. 

Examining the expressions (7) for the various cases 
(11) and writing the quaternions in the form (10), one 
finds that a class containing v quaternions with N =  1 
also contains 3v quaternions with N = 2  and 2v 
quaternions with N =  4. We conclude that the number 
of rotations in a cubic equivalence class equals 
½ .6v=24W.  

For a discussion of what W tells us about the symme- 
try of the coincidence-site lattice, we refer the reader 
to Grimmer (1973). In that paper it is also shown that, 
unless W=48,  we can obtain twins by appropriately 
choosing the interface between the two crystals in 
coincidence orientation. 

2.3 Coincidence disorientations 
The following procedure to find the disorientation in 

the class [A,B,C,D] of coincidence rotations follows 
immediately from Theorem 1. We have to distinguish 
three cases according to which of the numbers 2A, 
1/2(A +B) ,  A + B + C + D  is the largest (Table 2). 

Table 2. The coincidence disorientation 

Largest number Disorientation 
2 A a-1/2{A,B,C,D} 
1/2 (A+B) (2o)-I/Z{A+B,A-B,C+D,C-D} 

reordered according to decreasing values 
A+B+C+D (4o)-I/Z{A+B+C+D,A+B-C-D, 

A--B+C-D,  IA--B--C+D[} 

Each disorientation is given by a point in the dis- 
orientation region (DR) indicated in Fig. 1. Since al = 
(1/2-1)a0 requires al/ao to be irrational, it follows for 
coincidence rotations that the disorientation is deter- 
mined uniquely and that 0=  0,,, is possible only if the 
axis lies above the dotted line of Fig. 1. An equivalence 
class of coincidence rotations determines a disorienta- 
tion and, therefore a point in the DR. If from this 
point the DR appears under a solid angle 4nf, the 
weight W of the class will be 48f. For W= 48, the dis- 
orientation lies in the interior of the DR, for W=24  on 
a surface, for W= 12, 8, or 6 on an edge, and for W = 4  
or 1 on a vertex of the DR. We list the various possibil- 
ities in Table 3. 

Table 3. Axis [hkl] and angle 0 of  the disorientation that 
corresponds to a class of  coincidence rotations of  weight W 
W Axis Angle W Axis Angle 
48 h>k>l>O 0<0m 12 h>(k=l)>O O=Om 

h>k>(l=O) 0<0m 8 [111] 0<0m 
(h=k)>l>O 0<0,, 6 [100] O<Om 

24 h>(k=l)>O 0<0m 4 [111] 0=0m 
h>k>l>O 0=0,, 1 0=0 
[110] 0< 0,,, 

12 (h=k)>l>O 0=0,, 

The author would like to thank Drs E. Ascher, 
W. Bollmann, and M. Ojanguren for their encourage- 
ment and valuable discussions. 
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